What’s available today:

1. Resumes available in MySQL database. Current volume of Resumes: 4,000. The below
attributes are available:
a. Candidate’s current title and company
b. # of experience in years
c. Resume in text format
d. Candidate’s location
2. Jobs available in MySQL database. Current volume of Jobs: 100 The below attributes
are available:
a. Job Title
b. Job Location
c. Job Description in text format

Overall goals to be achieved:

Need to build a scoring system that can score resumes against each job. This will enable our
application to give job recommendations to candidates and hiring managers. The scoring will be
based on:

Overall matching score

Technical skills matching score (for each technical skill category)
Soft skills matching score (for each soft skill category)

Location matching score

Education matching score

Job title matching score

Industry/domain matching score

The above matching will be done against:

Jobs with Resumes - this will provide best matched resumes for selected job
Resumes with Jobs - this will provide best matched jobs for selected resume
Jobs with Jobs - this will provide similar jobs for selected job

Resumes with Resumes - this will provide similar resumes for selected resume

pPOON =~

For each of the matching criteria above, the scoring will be calculated and stored in a database
table for all combinations. For e.g. if we have 100 jobs and 100 resumes, a table will be created
as “job_resume_matches” that will have 10,000 rows. The table will have columns such as
job_id, resume_id, score, technical_skills_score, soft_skills_score, education_score,
job_title_score, industry_score, career_score. Likewise, there will be other tables as
‘resume_job_matches”, “job_job_matches”, “resume_resume_matches” with similar attributes.

Training data:

Since we have some data for existing job and resumes that were manually matched, this
dataset can be used for training the model.

What’s needed:

As part of this engagement, you will be working with us to achieve all the above-mentioned
goals. The goals will be executed in a 2-week sprint period. Each sprint will be scoped out and
be delivered accordingly.

The job entails building backend processes in Python that can calculate necessary scores and
keep on inserting/updating the scoring tables. As new jobs or resumes get added, the
processes will pick up the new records and score accordingly. The expectation is that the
process will run every 5 minutes and do the necessary processing. The process should be able
to score at least 100 jobs and 100 resumes within 5 minutes.

Additional backend processes may be built to train the model. This process can take longer.
Python 3.8 or higher version will need to be used

Apply best AI/NLP/ML model for scoring. YOU WILL NEED TO SPECIFY WHAT MODEL YOU
ARE GOING TO USE AND WHY PRIOR TO BUILDING THE MODELS.

What’s not needed:

e We already have parsed resumes in text format available. So, there is no need to
perform any pdf to text or document to text conversion.

e This is purely a backend processing job. So, creation of python program files with
appropriate python libraries will be used.
No user interface needs to be developed
No API’s need to be developed

MILESTONE #1
Duration: 2 Weeks

Goal: Build basic scoring framework for calculating score of a resume against each job

Scope:
- Apply necessary AlI/NLP/ML model to generate overall score for combination of jobs and
resumes.
- The following combination of key attributes should be considered for scoring:
- Job title and Candidate title
- Technical Skills matched between Job description and Resume
- Location matched between job and resume

Create a background process that takes all the jobs and for each job do a scoring
calculation with each and every resume and store the results into “job_resume_matches”
table. The “job_resume_matches” table will have job_id, resume_id, overall_score and
created_date attributes. This job should calculate score and create/update records in
this table. The score value should be stored between 0 and 100 - where 0 being least
match and 100 being most match.

Create background process to train the data

Sign-off criteria:

Appropriate programs are provided (scoring and training) with description on how to run
each program

Upon running the program, the program should populate “job_resume_matches” with
necessary fields

The program should create all combinations of jobs and resumes for eg. if during the
time of execution, the database has 100 job records and 5,000 resumes, the
“job_resume_matches” should have 500,000 records.

The overall score for each record should be between 0 and 100

The accuracy of scoring should be reasonable enough. It will be optimized in later
phases.

The program should be able to process new jobs and resumes and calculate scores for
new records only.

MILESTONE #2
Duration: TBD

Goal: Update the overall score (job to resume matches only) based on additional parameters
such as Education, Experience, Soft Skills and Industry/Domain

MILESTONE #3
Duration: TBD

Goal: Calculate individual score (job to resume match only) for Job Title, Location, Technical
Skills, Soft Skills, Education, Experience, Industry/Domain

FUTURE MILESTONES

Perform similar scoring as above between each Jobs

Perform similar scoring as above between each Resumes

Perform similar scoring as above between Resumes and Jobs
Extract technical skills from resumes and rank them (classification)
Extract soft skills from resume and rank them (classification)

Al based recommended keywords for Jobs and Resumes

APPENDIX

Technical Skills

] E F G H K L o P Q
statistics machine learning deep learming nlp data engineering databases web programming blockchain operating system virtualization ecommerce crm erp salesforce analytics big data
statistical models linear regression neural network nlp aws mysql hmis o biteoin microsoft windows vmware magento salesforce netsuite excel hadoop
statistical modeling logistic regression keras natural language processing ec2 oracle s jaa ripple maces vsphere prestashop siebel oracle financials tableau mapreduce
probability kmeans. theano topic modeling redshift sql server django ¢+ ethereum linux hyper-v joomla senvicenow sap sas spark
normal distribution random forest face detection Ida s3 postgres node.s javascript bitcoin cash unix qemu opencart 20h0 spss pig
poisson distribution xgboost neural networks named entity recognition docker nosql laravel python monero oraclevm woocommerce oracle cloud a3 hive
survival models svm convolutional neural network pos tagging kubernetes hbase react php litecoin virtualbox shopify sap saas shark
hypothesis testing naive bayes recurrent neural network word2vec scala cassandra objective-c blockchain xen pandas oozl
bayesian inference pea object detection word embedding teradata mongod ajax numpy zookeeper
factor analysis decision trees yolo o google big query rdbms asp.net scipy flume
forecasti svd 8pu spacy lambda bigquery ruby spss mahout

[markov chain lensemble models cuda gensim emr firebase golang spatfire el
monte carlo boltzman machine tensorflow nitk hive perl scikit
Istm nmf hadoop bash splunk
gan doct2vec sal r power
opency chow azure matlab h20
aml bag of words heroku scala
scikit-learn skip gram
bert
sentiment analysis
chat bot

