Job Description vs Resume Matching

Table of Contents
1	Steps	2
2	Points and Discussions	3
3	Matching Score Database	4

[bookmark: _Toc56002057]Steps
1. Fetch resume and job data from database
2. Preprocess resume details and job description(remove stopwords, punctuation and special symbols)
Output: Preprocessed resume details and job description in the form of list of words (resume_details_tokens, job_description_tokens)

3. Extract skills in resume details and job description
Initialize skills_in_resume = [], skills_in_job_description = []
for word in resume_details_tokens:
		if word in skills.csv:
			add word in skills_in_resume

for word in job_description_tokens:
		if word in skills.csv:
			add word in skills_in_job_description

4. Count matched skills in resume with job and find percentage of job matched
Initialize matched_skill_count = 0
for skill in skills_in_resume:
		if skill in skills_in_job_description:
			incerement matched_skill_count
skill_percentage = (matched_skill_count / length(skills_in_job_description))*100

5. Find the skill appear maximum number of times in resume detail and match it with job title to find similarity score
6. Find the average of skill_percentage_matched in step 4 and similarity score in step 5
Overall_skill_score = (skill_percentage_matched + similarity_score)/2
7. Find similarity score between resume title and job title (title_matched_score)
8. Find distance between location (loc_distance)

9. Save overall_skill_score, title_matched_score, loc_distance with resume_id and job_id
10. Repeat from step 3 to 7 for every resume with every job
11. Sort first on the basis of title_matched_score then overall_skill_score and then loc_distance

[bookmark: _Toc56002058]Points and Discussions
For Skills,
there is a direct match i.e. word to word. Hence +1 for each match.

For locations
We need to build logic for the same i.e. exact same location we will have more score, as distance increases (or city change), the score will decrease, and stops when there is country change.

For job Titles
There would be an approximate match, closer approximate will have more score and less approximate match.

Skill vs location vs job title
Which should be given priority and under what conditions, this is still open. Thinking about it. Please suggest if possible.

For MVP, i think going with skill count is OK, but later we need to do deeper skill score calculation. For skills, there are 2 things - firstly, does that skill exist in resume and/or job description. The other is the weightage of skill i.e if the count of same skill is multiple time, it has more weightage for e.g. if the python skill/keyword appears more than 5 times as compared to perl skill/keyword that appears only 1 time - it would mean the candidate is more proficient in python and it should match with job description proficiency. Hope this makes sense.

With regards to priority, the below will take precedence:

1. Job Title (this has to be a good match)
2. Skills (this too has to be a fair match)
3. Location (this could be loose match as some candidates are OK to relocate - but again within a country)

[bookmark: _Toc56002059]Matching Score Database
there is a table called as "job_person_matches" table that you can use to populate the details. You can create additional fields as necessary. here's what needs to be populated:

type → should be defaulted to "Job-Resume-Match"
source → "Backend"
name → Job Title
status → "Active"
job_id → Job ID
resume_id → Resume ID
person_id → Person ID (from resume table)
tenant_id → Tenant_ID from jobs table (if available)

You will need to create additional columns for matching results.

[image:]

image1.png
» 7 Indexes
» 1 Foreign Keys
» 51 Triggers

» 5 Job_restrictions

»] jobs

Object info

Table: job_person_matches

Columns:
ia
type
source
name
status
oreated_at
updated_at
wid
job_id
person_id
resume._id
match_details
created_by
updated_by.
tenant_id

bigint(20) UN Al PK
varchar(255)
varchar(255)
varchar(255)
varchar(255)
timestamp
timestamp
char(36)
bigin(20) UN
bigin(20) UN
bigint(20) UN
Json
bigin(20) UN
bigin(20) UN
bigint(20) UN

